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ABSTRACT 

Discrete levels of meteor beginning height are studied in detail, mainly 

by means of hB-vmplots. 

presented. Among the interpretations of these discrete levels, composition 

and fragmentation seem to be the most important. 

A summary of the observational evidence i s  

t 

Les niveaux discrets de l'altitude d'apparition de mgtiore ont e'te' 
itudiis en dLtail, principalement 1 'aide de repr6sentations graphiques 

de h en fonction de vm. Un re'sumk des faits observ6s est pr4sent;. La 

composition et la fragmentation semblent Gtre les plus importnntes de 

toutes les interprLtations de ces niveaux discrets. 

B 
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DISCRETE LEVELS OF METEOR BEGINNING HEIGHT 

Z .  Ceplecha 

1. INTRODUCTION 

Two distinct levels of beginning height of me teo r s  were  f i r s t  independently 

reported in 1958 (Ceplecha 1958; Jacchia, 1958, 1960). An extensive study of 

the problem was published (Ceplecha, 1967), in  which the kB parameter  and 

orbi ta l  elements were used. 

ple is the air density 

a t  the beginning height, v the initial velocity, and Z the zenith distance of 

the radiant), but i ts  meaning could s t i l l  be misunderstood (Verniani, 1967a, b). 

Thus, throughout this paper, I will u s e  plots of the number of meteors  a t  the 

beginning height (h  ) against  the initial velocity (v ). The points of the same 

number of meteors  a r e  connected in these plots by the "equinumber" lines. 

This,  of course,  is m o r e  direct ,  but  we shall see  that the resu l t s  a r e  prac- 

t ically the same as those obtained with the k 

new data on the different meteor  groups. 

The definition of the kB parameter  is very sim- 

(kB = log pB t 2. 5 log voo - 0. 5 log cos ZR, where p B 

co R 

B 00 

parameter .  I have included B 

This paper is based on many hundreds of plots s imi la r  to F igures  1 

through 11. The observational results f r o m  these distribution diagrams a r e  

draf ted with the use  of a light table, and the meteor  distributions plotted fo r  

different pa rame te r s  on different sheets  a r e  compared. Although only a few 

of the plots were chosen for  publication, all plots a r e  of equal importance, 

and the observational evidence presented in this paper is based on a complete 

review of the information f r o m  all plots. 

This work was supported in par t  by contract  NSR 09-015-033 f r o m  the 
National Aeronautics and Space Administration, and was accomplished while 
the author held a National Research Council Postdoctoral  Visiting Research 
A s s n ~ ; = t a r h i n  c i 7 n n n r t n A  5.; the S ~ , i t h ~ ~ ) ~ j ~ ~  Inct i t i~ t inn.  r --rrv-*-- --- IV . . *U" . ," . IL  
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The paper  is divided into two par ts :  the observational facts  and the 

interpretations.  I fee l  that the observational f ac t s  a r e  m o r e  important and 
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i 
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2 .  OBSERVATIONAL FACTS 

2 .  1 The hg-v, Plot f o r  McCrosky-Posen Super-Schmidt Meteors  

This paper is based on plots s imi la r  to  Figure 1. The x axis represents  

the initial velocity v 

height hB in kilometers.  Figure 1 is a l so  a table of the number of meteors  

contained in different h v intervals. The h interval is designated to be B' 00 B 
2 k m ,  and the v kilometer-per-second interval i s  0. 04 in log v If we 

connect a l l  the points a t  which the same number of meteors  (5 ,  10, 15, 20, 

3 0 ,  40)  occur in this table, we get Figure 1. A m o r e  precise  definition is: 

the center  of the zero-order  digit is assumed to  be the point a t  which the 

number of meteors  is obtained. 

in kilometers p e r  second, and the y axis the beginning 
03 

co 00' 

I choose the McCrosky-Posen Super-Schmidt sporadic meteors  (1 961) 
with cos Z 2 0. 5. The l imits f o r  cos  Z a r e  used to avoid the influence of 

low-inclination t ra jector ies  (though this influence is not large,  as I have 

confirmed f rom a few plots s imilar  to F igure  1 but with different intervals of 

cos Z ). The c lass ica l  showers a r e  not too frequent in the McCrosky-Posen 

(1  961) mater ia l .  Thus, the original number of a l l  sporadic and shower 

me teo r s  (2529) is reduced to  1848 sporadic meteors  with cos ZR 2 0. 5. 

McCrosky-Posen mater ia l  is homogeneous because of the nar row limits of 

the magnitude interval. In addition, the influence of the magnitude on the 

beginning height (F igure  1 )  is  small. 

R R 

R 

The 

The data in Figure 1 point clearly to the existence of two different levels 

This  same conclusion was of beginning height separated by about 9 t o  1 0  km. 

drawn in my previous paper (1967) where the kB parameter  was used; the k B 

3 
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Figure 1. McCrosky-Posen sporadic m e t e o r s  with cos Z R  -2 0. 5 

B inside two-dimensional intervals  of beginning height h 
and initial velocity vW. (The center  of the ze ro -o rde r  
digit is assumed to be the point at which the number of 
meteors  is  obtained. ) 
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r' 

c 

paramete r  represents  the -2. 5 slope (p, 

g r a m s  of kg (Ceplecha, 1967) a r e  really sums  of the numbers  of me teo r s  in 

F igure  1 in  the direction of the -2. 5 slope. 

the -2.  5 exponent, using the k 

Figure  1 now represents  a n  even be t te r  (two dimensional) verification of this 

exponent. 

Jacchia,  Verniani, and Briggs (1967) in the i r  extensive s ta t is t ical  studies of 

Super-Schmidt me teo r s  is m o r e  representat ive of the whole distribution in  

F igu re  1,  if this is assumed to be one s ta t is t ical  distribution. 

the question of the velocity eXpGile1it (p  v 1 is  so lved  by F igure  1, Irorri  

which a value close to -2. 5 results. 

difficult to accept the value - 3 .  5, s o  strongly defended by Verniani (1967b), 

as  representative f o r  individual groups. 

in F igure  1 ,  The histo- 

I verified in  m y  ea r l i e r  paper  

his tograms fo r  different velocity groups. B 

The - 3 .  5 exponent (shown for  comparison in  F igure  1) found by 

I assume that 
n 
co 

After  a n  inspection of F igure  1, i t  is 

The notation f o r  the levels  in F igure  1 is the same as in my previous 

Using this definition, I paper  (1967) ,  namely, A, B, C1, and C 

checked that the A, B, C and C groups are at the positions shown in 

F igu re  1. I wish he re  to point out c lear ly  that the two main  groups found by 

Jacchia (1958, 1960) were recognized according to the combination of begin- 

ning heights with the aphelion distances, which did not enable one to distin- 

guish the A f r o m  the C1 group. The average  aphelion distance, Q = 7 a. u. , 
-1 is represented in F igu re  1 by a ver t ical  line with v 

Q = 6 a. u. , v - 44 k m  s e c  ). Thus, the difference found by Jacchia  is 

equivalent to  the difference between the A t C and C groups. It i s  c l ea r  

f r o m  F igures  1 and 16 that the beginning-height difference is then much 

lower  ( 3  k m  as given by Jacchia,  1960) and does not f i t  the situation i n  

F i g u r e  1. 

C1 group is evident f r o m  Figure 16:  the selectional effect of choosing the 

bes t  (and thus longer and brighter) t ra jec tor ies  f r o m  the complete Super-  

Schmidt ma te r i a l  (well represented by McCrosky and Posen, 1961). This 

resul ted in suppression of the A group relat ive to  the C 

groups. 2 

1'  2 

-46 k m  s e c  (for  co -1 
co 

1 2 

The m a i n  reason that Jacchia  did not distinguish the A f r o m  the 

group. 1 

If shower me teo r s  a r e  added to the number of sporadics  in F igure  1,  the 

A group is practically unchanged; only the C and C groups are increased. 

T h e r e  is ,  generally speaking, not too much difference, suggesting that the 
1 2 

5 



shower meteors  a re  on the whole similar to the sporadic meteors  belonging 

to the C1 and C2 groups. 

2. 2 Meteor Magnitude Changes in the hB-v Plot 
00 

The total of 1848 sporadic me teo r s  contained in Figure 1 seems to  be 

high for  detailed studies, but the numbers  of meteors  a t  single intervals a r e  

not much different f rom 10. Separating all the mater ia l  into five groups 

according to the brightness of the meteors ,  we would mainly have only a few 

meteors  in a single (two-dimensional) interval, which is insufficient f o r  any 

s ta t is t ical  work. 

changing parameter  (which i s ge om et r ically equivalent to thre  e - dimensional 

studies) need greater  intervals of h 

Thus, the studies of hg-v, diagrams with one additional 

and voo. B 

I chose hB intervals of 3 k m  and log voo intervals of 0. 06 (ki lometers  per  

Figure 2 is then equivalent to Figure 1 and it will be used as a second). 

reference to  the following figures.  

F igure  2,  the B group is hardly recognized, but i t  does exist, as we shal l  

see  in studying the perihelion distances.  F igures  3 to 7 represent  the set  

of plots with decreasing meteor  brightness. The Cz group, which is most  

important for  meteors brighter than 0 mag, becomes almost  negligible f o r  

meteors  fa inter  than 1. 7 mag. 

ent i re  studied magnitude interval, but distinctly grows in  number f o r  fa inter  

meteors .  1 
fa inter  objects down t o  1. 7 mag;  f o r  fa inter  objects, the dec rease  of C1-group 

meteors  is evident. 

Owing to  l e s s  "resolving power" in 

The A group is strong enough through the 

The C group seems  to increase in number f rom brighter  t o  

1 The C2-group meteors  have g rea t e r  velocit ies than the combined A t C 

group. 

decrease  greatly and systematically f rom the combined A t C1 group to the 

Hence, the average m a s s e s  derived f r o m  the luminous equation 

C group, since our observational mater ia l  is l imited by nar row magnitude 

intervals.  

l inear  least-squares  f i t  among log pB, log vco, and log m 

7) resul ts  in misleading exponents ( a s  was the case  in  Jacchia 

2 
Thus, i f  A, C1, and C groups a r e  not used separately,  each 2 

( s ee  F igu res  3 to 

e t  al., 1967).  
co 

6 

k 

. 



# 

. 

7 0  

7 3  

76 

79 

82 

85 

88 

91 

94 - 
5 97 - 

m 
c 100 

I 0 3  

106 

109 

112  

1 1 5  

I18 

I21 

124 

127 

130 

1 3 3  

vm (km/sec 1 
10.0 11.5 13.2 15.1 17.4 20.0 22.9 26.3 30.2 34.7 39.8 65.1 52.5 60.2  69.2 79.4 

2 1  2 2  1 8 

I 1 2 

1 

1 1  

1 

1 

L 

1 

1 

1 

1 

1 I 3 

10 

5 2  

I 2 1  

187 

198 

1 8 3  

162 

167 

1 8 3  

I66 

94 

102 

106 

56 

27 

14 

5 

I 

1 1 

2 L 

2 12 61  106 193 180 167 167 203 142 123 116 55 Y Z  158 70 I847 

Figure 2. The same hg-v,plot a s  in Figure 1, but with 50% bigger 
intervals.  
some fur ther  s imilar  plots with additional conditions for  
the selection of meteors.  
velocity exponent a r e  plotted. 

This figure could be directly compared with 

The A and C levels with -2.  5 

7 



vm( km/sec) 
10.0 11.5 13.2 15.1 17.4 20.0 22.9 26.3 30.2 34.7 39.8 43.7 52.5 60.2 69.2 79.4 

1 
70 

1 
73  

76 

79 

82 

85 

88 

91 

94 
c- 

E 
X 91 

r 
-.c 

rn 
100 

103 

106 

109 

111 

115 

1 

n 1 

\ 2 I \  1 

\- 1% 1 1  

3 

l\ 2 

17: 1 

1 

1 

1 3 

1 

1 

1 

0 

4 

10 

3 3  

35 

3 1  

18 

26 

30 

28 

27 

3 3  

40 

20 

13 
118 

2 4  7 
121 

1 2 
124 

0 
127 

1 1 
130 

1 1 
1 3 3  

362 0 0 4 3 28 24 32 29 37 2 1  28 28 21 34 49 24 

Figure 3. The McCrosky-Posen sporadic meteors  with 
cos Z R  2 0. 5 and maximum magnitude M 
brighter than 0. The s a m e  plot as F igu re  2, 
with A and C levels the same.  

8 



76 

79  

*' 
R5 

v, ( kmlsec) 
10.0 11.5 13.2 15.1 17.4 20.0 22.9 26.3 30.2 34.1 39.8 45.7 52.5 60.2 69.2 79 .4  

1 
70 

73 

c 

. 

8 8  

1 
91 

94 

L- 

E 97 r 
Y 

m 
L 100 

103 

106 

10Y 

112 

115 

118 

121 

124 

127 

I 2  

2 1 1  

5 2  1 

\- - - -  

I 1 (6 

1 3 2  q -:\t 
2 4 

1 

1 

n 

4 3 \  

1 

130 

1 
133 

1 1 3 15 36 20 17 19 24 19 1 1  25 1 1  15 44 21 

1 

0 

0 

5 

22 

22 

29 

25 

21 

20 

19 

28 

15 

21 

29 

14 

7 

1 

1 

c, 

0 

1 

282 

Figure  4. The same as  Figure 3, but with meteor  magnitudes 
f r o m  0 t o  0. 5. The A and C levels a r e  the same a s  
in Figure 2. 

9 



70 

73 

7 b  

79 

va ( km /s ec) 
10.0 11.5 13.2 15.1 17.4 20.0 22.9 26.3 30.2 34.7 39.8 45.7 52.5 60.2 69.2 79.4 

1 2  

82 
1 

8 5  

8 8  

Y I  

94 - 
E 
x 97 
Y 

m 
.I= 

100 

1 0 3  

106 

IO9 

1 1 Z  

1 1 5  

1 i n  

1 2 1  

124 

1 
1 2 7  

130 

1 3 3  

0 I 12 23 33 40 31 33 4 1  35 28 32 12 19 40 19 

Figure  5. The same as  Figure  3, but with meteor  magnitudes 
from 0. 5 to  1. 
in Figure 2 .  

The A and C levels a r e  the same  as 

0 

0 

3 

8 

21 

40 

42 

40 

3 b  

3 3  

42 

36 

22 

28 

25 

14 

4 

3 

1 

1 

0 

0 

399 

1 0  



vm ( krnlsec) 
10.0 11.5 13.2 15.1 17.4 20.0 22.9 26.3 30.2 34.7 39.8 45.7 52.5 60.2 69.2 79.4 

2 1  
70 

73 

7 6  

79 

82 

*' 
e5 

. 

88 

91 

94 

E 
-* 97 
Y 

m 
c 

100 

103 

106 

109 

I12 

115 

118 

121 
r 

124 

127 

130 

I 1 1 \  

1 

133 

0 1 : b  30 49 53 41 56 67 46 47 27 9 20 21 4 

Figure 6.  The same as Figure  3,  but with meteor  magnitudes 
from 1 to 1. 7. The A and C levels a r e  the same a s  
i n F i g u r e  2. 

3 

0 

1 

1 7  

29 

48 

55 

5 6  

52 

56 

6 3  

52 

21 

16 

10 

6 

3 

1 

0 

0 

0 

0 

489 

11 



70  

73 

7 6  

79 

82  

135 

88  

9 1  

94 

97 

100 

103  

106 

109 

112 

115 

118 

vm (kmlsec) 
10.0 11.5 13.2 15.1 17.4 20.0 22.9 26.3 30.2 34.7 39.8 45.7 52.5 60.2 69.2 79.4 

1 1  1 

1 

1 

\ 3  2 1 

\ 1  \ 6  8 9 \ 3 \  

1 

3\\,1 1 1 

1 

6 

18 

39 

44  

3 7  

30 

35 

32 

2 9  

22 

9 

4 

2 

1 

0 

1 1 
121 

1 1 
124 

0 
127 

0 
130 

0 
133 

1 9 24 3 5  4 7  4 3  4 6  30 34 2 1  9 4 2 4 4 2 315  

, 

Figure 7. The same  a s  F igure  3, but with meteor  magnitudes 
fainter than 1. 7. The A and C levels  are the same  
a s  in Figure 2. 

12 



2. 3 Cosmic Weights in hB-v, Plots 

If Figure 2 is constructed from the sum of cosmic weights inside the 

interval (McCrosky and Posen, 1961), instead of f r o m  meteor  num- hB’ vm 
be r s ,  we get F igu re  8. 

levels of beginning height separated by 9 km. 

that in F igures  2 and 8 both levels a r e  simultaneously distinctly present in 

velocity intervals f r o m  2 0  to 40 k m  s e c - l .  

Figures  2 and 8 d i f f e r  little in respect to the two 

It is especially important 

t 

? 

The C group seems to be so  strong in F igure  2 only because of the high 2 
probability that these meteors  wi l l  appear  ( i f  the definition of cosmic weight 

has  the cor rec t  exponent at vm). 

a r e  present in the whole dynamic range of meteor  velocities and that only 

their  relative importance is changed with the initial velocity of the meteor.  

F igu res  2 and 8 suggest that both the levels 

2. 4 Orbital Elements in hB-v, Plots 

I plotted the hB-v, diagram by choosing various intervals of different 

orbital  elements. 

element distribution of individual groups as they were derived i n  m y  recent 

paper  (Ceplecha, 1967; see especially pp. 38-45). I present he re  only a 

c l ea r  indication of the existence of the small B group at the intermediate 

level  of beginning height. 

perihelion distances l e s s  than 0.25, and can be compared with F igure  1 0  

containing all sporadic meteors  with perihelion distances f r o m  0.25 to 0. 5. 

The great  major i ty  of me teo r s  in F igure  9 a r e  of the B group. 

B group appear  in  Figure 10, where the C 

and the C 

perihelion distances show continuous increase in meteors  belonging to the 

A and C groups. Differences in cosmic weights for  the B-group me teo r s  2 
cannot explain Figure 9. 

By this procedure I confirmed the results on orbital- 

Figure 9 contains all the sporadic meteors  with 

Few of the 

and A groups a r e  predominant 1 
group begins to  be distinguished. Similar  plots f o r  g rea t e r  2 

1 3  
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The aphelion distance, Q, i s  used as a parameter  fo r  the h -v plot 

(aphelion distance was not used in m y  1967 paper), which gives the following 

results:  fo r  Q < 2 a. u. , only the A group is present;  fo r  Q = 2 to 3 a. u . ,  the 

A group is overwhelming and the C1 group starts to form; for Q = 3 to 4 a. u. 

and 4 to 5 a. u . ,  the A group is about 60% and the C1 group 40%; fo r  

Q = 5 to 6 a. u. and 6 to  7 a. u., the A group is about 5070 and the C 1 
50700; for  Q > 7 a.u., the situation is completely different - the A group is 2070, 

the C1 group 3570, and the Cz group 4570. If we consider that the precis ion of 

individual values of Q i n  the McCrosky-Posen data is not good, especially fo r  

Q > 4 a. u. , the statist ical  separation of A, C1, and C 

distance is evident. The separation of combined A t C f r o m  C by means  

of aphelion distance and beginning height was recognized previously by 

Jacchia (1958). 

B c o  

group 

by means of aphelion 2 

1 2 

2. 5 Seasonal and Diurnal Variations 

Since seasonal and diurnal variations might be a possible explanation f o r  

the existence of the two main levels of beginning height, I used the hB-vco 

d iagrams constructed for  different seasons (January to March, April  to  June, 

July to September, October to December) and different t imes of the day 

(< 0. 2 of UT day, 0. 2 to  0.25, 0.25 to  0. 30, 0. 30 to 0. 35, 0. 35 to 0. 40, 

> 0. 40). 

levels  of beginning height exist  at all seasons and during the whole night 

simultaneously. 

The most  important conclusion f r o m  all the plots is that both main 

There a r e ,  of course,  changes in  the relative numbers of me teo r s  

belonging to different groups. 

inate;  in  autumn, the C group dominates; and in winter, there  is approxi- 

mate ly  the same number of meteors  i n  the A, C1, and C 

evening hours have only the A and C 

velocity selection; the C 

morning of a winter day it is the s t rongest  group because of the geocentric 

velocity selection. 

In spring and summer ,  A-group me teo r s  dom- 

2 
groups. The 2 

groups because of the strong geocentric 1 
group s t a r t s  to f o r m  af te r  midnight, and in  the 2 
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Of all the figures,  the most  instructive is Figure 11, which contains 

me teo r s  of ear ly  morning hours (> 0. 40 of UT day), chiefly in the winter sea-  

son. 

that the seasonal and diurnal variations of beginning height cannot explain the 

existence of the two main levels of beginning height. 

The three groups a r e  clearly presented in Figure l l ,  which indicates 

The hB-v, plots were a l so  made for  different magnetic indexes measured 

a t  Tucson. 

used. 

beginning-height levels A and C coexist. 

The actual magnetic indexes a t  the passage of each meteor  were 

Whether the intervals a r e  magnetically quiet o r  disturbed, the two 

2 .  6 Average Orbital Elements Along the A and C Lines 

We can a l so  examine the orbital  elements of meteors  of individual groups 

in a different manner. 

average element at each interval can be plotted instead of the numbers of 

meteors .  

element considered. 

(PB ccv, -2 '  5, and look for  the changes in each element. The most  interesting 

resu l t s  a r e  presented in  F igures  12  to  15. 

The hB-v, diagram can be used and the par t icular  

Then we can plot l ines of the same average values of the orbital  

We can a l so  follow the A and C lines of F igure  1 

The numbers of meteors  (inside a n  interval of 2 k m  in h and 0. 04 in B 
log v,) along the A, B, and C l ines  of F igure  1 a re  plotted in F igure  12. 

The x axis  is log v,, but hg changes a s  we follow the A and C lines of 

Figure 1. 

to the inaccuracy of the material and causes the interference of the A, B, 

and C levels. 

distinct. 

o rb i t s  ( l / a )  is plotted in  Figure 13. 

the A, B, and C lines of Figure 1. 

in  F igure  14. 

up to vw = 40 k m  sec 

to the C group. 2 
axis (F igure  1 3 )  a re  greater .  

the C line. 

Figure 1 2  shows the influence of statist ical  spread, which is due 

But the differences in meteor  numbers  of the groups a r e  

The average smooth reciprocal  semimajor  axis of the meteor  

Again, the average was followed along 

A similar  plot f o r  the inclination is given 

There is little difference in  the inclinations between A and C 

. The high-inclination orb i t s  with v > 40 k m  belong -1 
00 

The differences between A and C groups in the semimajor  

The orbi ts  a r e  sho r t e r  along the A than along 
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The mos t  surprising is the plot of average perihelion distances q in the 

h -v  d iagram (Figure  15). The a r e a  of minimum values of q is clearly 

connected with the B group. 

shows nothing special in the same B-group area .  

diagram, or F igure  1 5  reflects the formula fails  in  this a r e a  on the h 

r ea l  distribution. 

local maximum of number of meteors  (B group). Thus, f o r  some reason, the 

smal l  perihelion distance probably causes  these meteors  to begin between the 

A and C levels.  

B o o  
A similar plot for  the average cosmic weight 

Ei ther  the cosmic-weight 

B 
The minimum of perihelion distance is connected with the 

vm (km/ssc) 
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Figure 15. The average perihelion distance i s  given in the hg-v, 
plot. The A, B, and C l eve ls  of F igure  1 a r e  shown 
by dotted lines. One would expect ver t ical  l ines con- 
necting the same average perihelion dis tances  if only 
one s ta t is t ical  group is present ,  but the plot ver i f ies  
a strong dependence of this quantity on the beginning 
height. (McCrosky-Posen sporadic  me teo r s  with 
cos z 2 0.5.)  R 
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l -  . 

The regular distribution of any element in a plot similar to Figure 15  

should be a vertical  line, as one would expect. 

expect average elements to  be different for  different initial velocities. 

if the beginning heights a r e  spread only statist ically because of e r r o r s  of 

measurement,  there could hardly be any change of average element with 

beginning height. Figure 15 shows just  the opposite in some parts,  verifying 

that differences in beginning height a r e  due to some physical cause. 

plots similar to Figure 15  f o r  other elements show the same anomalies, but 

not s o  strikingly. 

only small  deviations f rom the vertical  lines; the eccentricity plot shows 

grea te r  deviations f rom regularity; the semimajor-axis  plot shows even 

grea te r  deviations; the aphelion-distance plot is similar to  the semimajor-  

axis  plot; and the perihelion-distance plot (Figure 15)  is completely different 

f rom the regular expected distribution. 

This means that one can 

But 

The 

The plot of average inclination is the most  regular,  having 

2. 7 Jacchia 's  Super-Schmidt Meteors in the hg-v, Plot 

The preceding sections d e a l t  with the McCrosky-Posen sporadic meteors .  

It is useful to look a t  a precisely reduced selection f rom the same mater ia l  

published by Jacchia e t  al. (1967; a l s o  r e fe r r ed  to a s  Jacchia ' s  meteors) .  

We will a l so  inspect the problem of differences between the "dynamic" and 

the "photometric" m a s s  i n  the hg-v, diagram. 

The data on Jacchia 's  meteors  a r e  more  prec ise  than those of McCrosky- 

Posen, but if we take all the meteors  (including showers) and omit those with 

cos Z < 0. 5, we have only 317 cases.  Thus, only the low-resolution intervals R 
(hB = 3 km and log v 

selection (cf. Figure 2):  

group is dominant (partly due t o  showers),  and the C 

This  distribution was caused by the fact that A-group meteors  have much 

shor t e r  t ra jector ies  with lengths less than 12 k m  ( see  Section 2. 12), while 

the C and C groups have trajectory lengths grea te r  than 12 km. The main  

purpose of Jacchia 's  selection was to obtain the best  possible decelerations;  

= 0.06) were used. Figure 16 shows the influence of 
00 

The A group i s  a ra ther  large diffuse a rea ,  the C1 

group is well defined. 2 

1 2 

L1__. uius - 1 iuiig:er -.. . ~ t ra jec tor ies  w-ith riaiiji rotating shutter dashes w-ere strongly 
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L 

. 

prefer red .  

Posen  meteors .  Thus, even without the above selection, the distribution 

would be more  s imi la r  to the distribution of smal l -camera  me teo r s  ( see  

Section 2. 10) .  The effect of brightness a l so  caused Jacchia 's  me teo r s  to 

begin about 2 k m  higher on an average than the McCrosky-Posen me teo r s  

(Figure 2 vs. F igure  16). We are  thus able to explain why the A group in 

Jacchia 's  mater ia l  is s o  markedly suppressed. But, using the hg-v, plot 

together with the McCrosky-Posen data f rom Figure 1, we a r e  a l so  able to  

distinguish statist ically the A group in Jacchia ' s  mater ia l .  

On a n  average, Jacchia 's  meteors  a r e  brighter than the McCrosky- 

An extensive statist ical  study of Jacchia 's  meteors  was published (Jacchia 

e t  al. ,  1967), and the results were assumed to represent  an  average meteor  

of magnitude interval character is t ic  fo r  Super-Schmidt cameras .  

ison of F igures  2 and 16 c lear ly  shows that the published resul ts  a r e  m o r e  

representative of the C 

meteors .  

Compar- 

and C 1 2 groups than of a l l  the Super-Schmidt 

The velocity exponent -3 .  5 ( p B  v i3 '  '), i f  related to the air density at 

the meteor  beginning, was derived f rom meteors  in Figure 16. It is obvious 

f r o m  Figure  16  that the line for  the -3. 5 exponent f i t s  the whole pat tern quite 

well. Since, however, we know f rom Figures  1 and 2 that there is a s ta t is-  

t i ca l  distribution represented by two different levels - not by only one, as 

Jacchia  e t  al. (1967) assumed - the - 3 .  5 exponent is clearly a n  apparent o r  

unrea l  value. The levels of the -2. 5 exponent a r e  represented in F igure  16. 

They were plotted f rom Figure  1, with the beginning height simply increased 

by 2 k m  in both cases.  

F igu re  1,  these two levels would be hard to  recognize f rom Figure  16. 

It is  clear that, without previous knowledge of 

Jacchia used the separation by aphelion distance Q > 6 a. u . ,  which is 

equivalent to the separation of combined A t C 

a l s o  one of the reasons that the difference (3  km) in beginning height between 

m e t e o r s  with Q > 6 a. u. and Q 5 6 a. u. is found to be much l e s s  than the 

height difference between the A and C levels.  

f rom C2. This is probably 1 
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The average m a s s e s  of Jacchia ' s  me teo r s  derived f r o m  light curves  a r e  

much s m a l l e r  f o r  the high-velocity C group than for  the C group. Jacchia  

e t  al. (1967) used fo r  the best  f i t  of beginning heights the m a s s  exponent 
2 1 

( p B  E v,",). n P  But i f  the big sys temat ic  change in mass in F igu re  1 6  (decreas-  

ing f r o m  left to  right) is  considered, the resulting mass exponent is seen  to 

be, ra ther ,  a velocity exponent. A very  small change of velocity exponent 

in the luminous equation would have a strong influence on the resulting mass 

exponent i n  the relation p 

grouping at different levels.  

a v n m P  B 00 co' simply because of the existence of the 

W e  saw i n  Section 2. 2 (F igu res  3 to 7) that the C group increases  in  
2 

meteor  number with increasing brightness,  relative to  the other groups. If 

this corresponds to  actual changes in the importance of the groups, then the 

mass exponent more  probably r ep resen t s  these s ta t i s t ics  of me teo r  numbers  

of individual groups than any rea l  physical change of the h with the mass. B 

2. 8 Dynamic and Photometr ic  M a s s e s  i n  the hR-vm Plot  

My recent  paper ( 1  966) on the d i f fe rences  between the dynamic (m ) and d 
the photometric (m 

between the kB parameter  and log (m 

of Jacchia - e t  al. (1 967) with many p rec i se  decelerat ion measurements  neces-  

s a r y  f o r  the dynamic m a s s  computation. Therefore ,  we do  not have a s  much 

ma te r i a l  f o r  the study of the A group (F igure  16)  as we would fo r  all Super-  

Schmidt meteors .  

) mass of a m e t e o r  points out c lear ly  the dependence 
Ph 

/md).  The m e t e o r s  used a r e  those 
Ph 

I simply define dynamic mass as 

putting ( r A ) 3  = 1 (I' is the d r a g  coefficient, A is the shape-density factor) ,  
3 *a. 

where (!?A) is  a multiplying fac tor  of the right-hand side.  

( l ) ,  log md is a relative value with some unknown constant t o  be added. 

.t. 

F r o m  definition 

. 

.II -4. 

This  definition is the same as the definition of A log p used by Jacchia  
e t  al. (1967), except f o r  the multiplying factor .  
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On the other hand, I define photometric mass as 

which is in complete agreement with the definition of Jacchia et  al .  (1967); 

and I use the m values f r o m  Table 1. 2 of that paper, which a r e  equivalent 

to the old T 
1 

value 6.46 X 1O-I (cgs;  I in zero-magnitude units). 0 

I computed log ( m  /md) f o r  each point published in their  Table 1 .  2 .  I 
Ph 

used hB-v,plots with different intervals of log ( m  

to point out the close connection between the beginning-height levels and 

log (m h/md). 
of -2 to t3. 

tribution (Ceplecha, 1966) .  
intervals,  we get the following results:  The log (m /m ) interval f rom -2 

to 0 belongs mainly to the A and B groups (Figure 17);  the interval 0 to 0. 8 

is character is t ic  for  statist ical  overlap of the A and B groups with the C1 and 

C groups (Figure 18); the C and C groups a r e  dominant in the interval 

0. 8 to 1. 5 and only insignificant interference of A and B is present  (Figure 19) ;  

and the C and C 

/m ) ( see  F igures  17-20) 
Ph d 

Almost a l l  values of log (m /m ) a r e  inside a broad interval 
P Ph d 

The distribution seems to be f a r  f rom a uniform statist ical  d i s -  

If we divide this broad interval into smal le r  

Ph d 

2 1 2 

groups a r e  the only ones in the interval 1. 5 to 3 (Figure 
1 2 

20) .  

We must  take into account that the log (m /m ) values have a t  least  a 
Ph d 

3 t imes  grea te r  statist ical  spread than do the kB  values (Ceplecha, 1966). 
Then, if we compare both extreme cases  (Figure 17 with Figure 20), we see 

the complete separat ion of the A and C groups a l so  on the basis of 

log (m 
of the kB parameter ,  but the hB-v, plots a r e  even m o r e  instructive f o r  the 

whole situation. 

/md) values. These resul ts  a r e  the same  as those obtained by means 
Ph 
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Figure 17. Numbers of J acch ia ' s  meteors ,  with the difference 
between photometric and dynamic mass in the inter-  
val f rom -2 to 0 ( - 2  I log mph/md < O), a r e  given 
inside two-dimensional intervals of h g  and vm. The 
A, B, and C levels of Figure 16 a r e  shown. 
and B groups a r e  the only ones present.  
meteors  with cos Z R 

The A 
(Jacchia 's  

2 0. 5. ) 
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The C1 group is the m o s t  pronounced, the C2 group 
s t a r t s  to  form, the A and B groups a r e  weaker than in 
Figure 17. (Jacchia 's  me teo r s  with cos Z, 2 0. 5. ) n 
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Figure  20. The same as Figure 1 7  but for 1. 5 5 log m ph/md < 3. 
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2. 9 Beginning Heights of Iron-Meteor Pa r t i c l e s  

There is not very  much observational mater ia l  for  any definitive con- 

clusion. 

i ron  meteor  spectra  a r e  really connected with solid-iron meteoroids.  

examines the results of a l l  experiments  with ar t i f ic ia l  meteoroids,  the spread 

of beginning height is a lmost  30 km, which might be explained by some ser ious  

preheating of the meteoroid surface due to  the shape charge explosion. 

the f i r s t  two experiments were performed (McCrosky and Soberman, 1963; 

McCrosky, 1968), the  preheating was expected to be small. The observed 

beginning heights were  6 and 3 k m  lower than the A level. 

ing values for  the two me teo r s  with i ron  spec t ra  a r e  7 k m  and 9 k m  (Ceplecha, 

1967). 

have beginning heights lower than the A level. 

As pointed out by McCrosky (1968), there  is no guarantee that pure 

If one 

When 

The correspond- 

Because of the spread, one could simply deduce that the i ron  bodies 

2. 1 0  Bright Meteors and Fi reba l l s  

We must  be very cautious in  the study of the beginning heights of these 

bright objects: small-camera me teo r s  a r e  statist ically inhomogeneous, owing 

to  the l a rge r  dynamic range of meteor  magnitudes, and observational mate-  

rial f r o m  observator ies  throughout the world m u s t  be combined (Ceplecha, 

1967). 

cameras  (McCrosky, 196 7 ,  private communication) , where the dynamic 

range of meteor  magnitudes is even l a r g e r  and the sensitivity of the c a m e r a s  

is low. 

unfavorable to  beginning-height studies. 

The situation is  even worse if we use  resu l t s  of the P r a i r i e  Network 

The distance of me teo r s  f r o m  the P r a i r i e  Network stations is a l s o  

Nevertheless, we can recognize the same levels in  the h -v  plots f o r  B o o  
smal l -camera  meteors  a s  were  found for Super-Schmidt meteors .  

group is l e s s  significant than in  the case  of the McCrosky-Posen Super- 

Schmidt meteors .  All three groups have approximately the s a m e  number of 

meteors ,  whichmeans the C group as a whole is s t ronger  than the A group. 

The A 
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" 

The P r a i r i e  Network meteors a r e  not suitable fo r  beginning-height 

studies: 

could mostly be due to observational effects connected with the geometr ical  

conditions of visibility. 

is virtually absent (McCrosky, 1967). 

Schmidt meteors  and the small-camera me teo r s  have a preponderance of 

strong C groups. The sporadic faint  me teo r s  and f i reba l l s  have only an 2 
insignificant number of the C -group me teo r s  with high velocity. 

the spread of magnitudes is too wide, and the observed pat tern 

One fact is of course almost  certain: The C2 group 

Thus, it s eems  that the bright Super- 

2 

-. l h e  maximum of the distribution of the rat io  of photometric and dynamic 

mass fo r  P r a i r i e  Network meteors  is systematically shifted by about 2 o rde r s  

relative to the same distribution f o r  Super-Schmidt meteors .  

maximum fo r  P r a i r i e  Network meteors  is almost  a t  the place previously 

found fo r  the Super-Schmidt-meteor A-group maximum (Ceplecha, 1966). 

The least-squares  solution f o r  exponents in  the drag  equation, where the 

dynamic mass was replaced by the photometric mass (Ceplecha, 1966), gave 

all three exponents (X, Y ,  Z )  values close to 2 . 2  instead of the theoretical  

value 3. This is much closer  t o  the single-body theory than i n  the case of 

Super-Schmidt meteors .  

group of P r a i r i e  Network meteors with lowest beginning heights, all three 

exponents a r e  quite close to 3, the value of the single-body theory. 

The main 

If the least-  squares  solution is obtained for  the 

2. 11 Shower Meteors  

W e  have s o  far dealt mainly with sporadic meteors .  Figure 21 (the 

plot) i l lustrates  the position of each meteor  shower as given by hB -vm 
Jacchia  e t  al. (1967). 
given at exactly the same positions as plotted in  F igure  16. 

the showers a r e  close to the C level. The Draconids a r e  the well-known 

exception, and they begin 7 k m  higher than the average C level; but this is 

still somewhat c loser  to the C level than the distance of the A level f rom the 

C level. The C group is found fo r  a Capricornids, K Cygnids, Southern 

Taurids ,  Northern Taurids;  the C 2 
and  Orionids; the B group f o r  Geminids, 6 Aquarids, L Aquarids, and 

Quadrantids. 

The lines of the -2. 5 and -3 .  5 velocity exponents are  

On the whole, 

1 
group f o r  Lyrids,  (r Hydrids, Perse ids ,  

There is no case of a connection between any classical  shower 
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Figure  21. Positions of individual showers  in  the hg-v, plot. 
A, B, and C levels of the -2.  5 velocity exponent a r e  the 
same a s  in  F igure  16. 
used. 
comparison. 

The 

Jacchia ' s  shower me teo r s  a r e  
The -3 .  5 velocity exponent level  is given for  
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h 

. 

. 

and the A level. 

a r e  the same a s  those of sporadic me teo r s  at the same positions in Figure 

21. 

beginning heights at B level and wi th  l a rge  perihelion distances. 

exception of Draconids and Quadrantids, there is no difference in  principle 

between the shower meteors  and the sporadic meteors  belonging to the B 

and C levels. 

The orbital  character is t ics  of the above-mentioned showers 

The Quadrantids a r e  the only exception; they form the only shower with 

With the 

2. 12 End Heights and Lengths 

F igure  22 represents  the number of meteors  in the end-height initial- 

velocity (h -v ) plots, where the McCrosky-Posen meteors  a r e  used. The 

two ma in  levels found f o r  beginning height a r e  not dist inct  for  the end heights, 

indicating that longer luminous t ra jector ies  a r e  character is t ic  fo r  the C level. 

The two lines plotted i n  Figure 22 represent  the A and C levels. 

simply derived f rom the plot in Figure 1 by computing the average end heights 

along the A and C lines and then represented in  F igure  22. 

age end-height difference betweenA and C groups seems  to be 5 km and to 

increase  slightly with velocity. 

ity interval in F igure  22  is partly caused by the masking effect of cos Z 

( cos  Z 

C levels,  which is smaller than in the case  of beginning heights. 

exponents, n, fo r  the end heights (p, .Cvin) a r e :  A group, between 1 and 2 

with a n  average of 1 . 4 ;  C 

1. 5 ;  C 

picture  in Figure 22 ,  without separating the groups according to Figure 1, 

could be represented by a velocity exponent of about 2, which is consistent 

with the value found by Jacchia et al. (1967). The comparison of beginning 

and end heights for  the A and C levels is plotted in F igure  27. 

E m  

They were 

Thus, the aver -  

The broad distribution of hE fo r  each veloc- 

R 

The velocity 

2 0. 5 in  F igure  22)  on the separation of the two maxima of the A and R 

group between 1 and 2 with a n  average value of 1 
group, between 3 and 4 with a n  average value of 3 .  6. The complete 

2 
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Figure 22. This i s  a complete analogy of F i g u r e  1,  but the end heights 
a r e  used instead of beginning heights. Thus, the numbers  
of McCrosky-Posen sporadic m e t e o r s  with cos Z R  2 0. 5 
inside two-dimensional intervals  of hE-voo a r e  given. The 
two main  levels a r e  much c lose r  i n  the hE-vmooJ and the 
statistical spread makes  just  one broad maxmum between 
them. 
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Figure 22 indicates that meteor  length could be important f o r  the study of 

beginning-height groups. 

with cos Z R 
F igure  1 , we get F igure  23. 

a lmost  half those of C -group meteors  with the same  velocity. 

is intermediate betweenA and C 

clearly separated f rom the C 

caused mainly by differences in the cos Z 

previously used to  separate  C from C (Ceplecha, 1967). Figure 23 shows 

that the length of the meteor  l ~ m i x ~ ~ u s  tra;ectory J-- c o d d  be =sed to  distinguish 

between C1 and C groups. 

me teo r  length is represented in F igures  24 and 25, where the numbers of 

me teo r s  i n  the h -v  plot are used. If we consider the statist ical  spread of 

the approximately reduced McCrosky-Posen me teo r s  , 
separat ion of the A group (mainly with I 5 12  km) f r o m  the C group (mainly 

with I < 12 km). 

If we plot the average length of sporadic meteors  

1 0. 5 a s  it changes along the -2.  5 l ines of the A and C levels of 

The A group has  extremely shor t  t ra jector ies ,  

The B group 

group is 
1 

An important fact  is that the C 
1' 2 

group by short  t ra jec tory  lengths. This is 1 
The inclination of the orbit was R'  

1 2 

The separation of the A f rom the C level by 2 

B c o  
we clearly see the 

There is a systematic change of cos Z with velocity along the l ines of R 
individual groups (Figure 26). 

c lose to 0. 8. 

group, and suddenly changes to 0. 90 again when entering the C group. F o r  2 
the C group, it dec reases  again f r o m  0. 90 to 0. 75. The average beginning 

heights are compared with the average end heights in F igure  27. 

The cos Z R  value fo r  the A group is generally 

F o r  the C level  it dec reases  f r o m  0. 90  to  0. 75 inside the C1 

2 

2. 1 3  Summary of Observational Results 

1 .  Beginning heights of photographic me teo r s  have two main levels 

inclined approximately by -2. 5 in the h -v plot. These two levels exist  

together, at least in the velocity interval  f r o m  2 0  to 40 k m  sec - I ,  and a r e  

separated by a n  approximately 10-km difference i n  the beginning height. I 

will  refer  to  the lower level as the A level and to the corresponding me teo r s  

as the A group; the higher level will be the C level and the corresponding 

m e t e o r s  the C group. 

B o o  

* 

& -I. 

This  notation is  consistent with m y  previous papers .  
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Figure  23. The average  lengths of luminous t r a j ec to r i e s  computed 
along the A ,  B, and C l ines  of F igu re  1 a r e  plotted 
against  log vm. The A group h a s  much s h o r t e r  orb i t s  
than the C group. The Cz group has  s h o r t e r  orb i t s  
than the C1 group, mainly because of geometr ical  

meteors  with cos 
conditions (cos  Z sporadic  
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Figure  24. McCrosky-Posen sporadic  me teo r s  with cos  Z R  2 0. 5 
and with the length of the luminous t ra jectory 5 12 k m  
a r e  given in  the same plot as  F igure  1. 
levels a r e  those of F igu re  1.  
p red omina nt . 

The A and C 
The A group is 



vm (km/sec) 
10.0 11.0 12.0 13.2 14 .5  15.8 17 .4  19.1 L0.Y 2 2 . 9  25.1 27 .5  30.1 33.1 3b .3  39.8 4 3 . 7  4 7 . 9  52 .5  57 .5  63.1 6 9 . 2  7 5 . 9  

u ~ u 0 0 ~ 0 1 o u o n o ~ o o o u o u o u o o  

J o u 0 0  o o n  o 0 0  0 o (I o 0 0  u o u o o o o 

U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 0 0 0  

o o o o o o o o o o o o u o o o u o o  :\I: 0 0 0 0 0 0 0 0 0  0 0 0  0 0 0  0 0 0 0  

U 2 \ I A O  0 0 u u 1 0 0 0 0 0 0 0 0 J 0 u 0 0 

10 

1 2  

7r. 

7 h  

7 8  

RO 

8 2  

8 4  

Hb 

88 

90 

92 

94 

96  

Y R  

I06 

10H 

1 IO 

1 1 2  

I14 

I l b  

I 1 8  

120 

1 2 2  

1 2 4  

126  

128  

130 

1 3 2  

" O o x  
u o o  

u o o o o  

0 0 0 0 0  

u u o o o o  

u u u o o o o  

0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 1 0  

u o o o o  

u 0 0 o o o o u o u o 1 1 o 3  

u u o o o  

u o u o o  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1  

u u o 0 0  

u o o o o  

u ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2 4 0  

u U U 0 0  0 0 0 0 0 0 0 0 ( I O  0 0 0 0 0 0 1 5  0 

o o o u l o o u o o o u o u o o o o  

2 ,  I 0 o l o o o o 0 u o o u o o o  

1 0 0 0 0 0 0 u c 1 0 0 0 0  0 0 0 3  

I 1 1 5  2 0 0 0 0 0 0 0 0 0 0 0  

0 0 0  

0 0 0 0  

4 3 3 3  

2 3 0 0 0 2 0 0 0  

4 1 0 0  

0 u 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 1 0 0 0 1  

u o o o o u o n o u o o o o ~ o o u o o o o o o  

~ ~ o u n o o o o o o o ~ o o o o o o o o ~ o o  

u 0 0 0 0  0 0  ( I O  0 u 0 0 0 0 u 0 u 0 0 0 0 0 0 

u o o u o ~ o ~ o o o ~ ~ o o o u u o o o o ~ o  

u 0 0 0 0 0 0 0 0 0 0 0 0 0 u ~ 0 u 0 U u u u L  

0 0 u 3 3 5 2 4  2 7  2 3  3 b  5 4  66 b 5  09 5 1  4 b  52 4 2  2 1  30  6 4  7 9  48  8 

1 

0 

0 

n 

1 

4 

3 

5 

9 

22 

2 9  

36 

5 4  

61 

b6 

90 

9') 

b3 

41 

4 1  

5n 

5 5  

3 7  

17 

10 

8 

6 

2 

0 

1 

0 

1 

1 

e i a  

c 

Figure  25 .  The s a m e  as  Figure  24,  but with length of the luminous 
t ra jec tory  g rea t e r  than 12 km.  
a r e  p red ominant. (M c C r o sky - P os e n  s po rad ic me  teo r s 
with cos Z 

The C1 and C2 groups 
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beginning heights of the A group a r e  close to the end 
heights of the C level. 
me teo r s  with cos Z 

The 

(McCrosky-Posen sporadic 
2 0. 5. ) R 

2. The C group of meteors  shows two maxima of distribution with 
-1 velocity. 

concentrated orbits, and I will call  it  the C1 group. 

6 0  k m  sec  

re fer  to it a s  the C 

The maximum close to 3 0  k m  sec  is connected with ecliptically 

The maximum close to 
-1 is connected with random inclinations of the orbits,  and I will 

group. 2 

3. The orbits of the A and C groups have aphelion dis tances  l e s s  than 1 
6 a.u., and their orbital  planes have inclinations l e s s  than 40".  

of the C 2 
inclined. 

group. 

The orbi ts  

group have aphelion distances g rea t e r  than 6 a .  u. and a r e  randomly 

Thus, the c r i te r ion  of 6 a. u. cannot separate  the A f rom the C1 

"J 
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4. Meteors with q < 0. 2 5  define an  intermediate level (which I will call  

B group) in the hg-v, plot between 30 and 50 k m  s e c - l .  

5. The differences in orbital elements between the A and C1 groups 

cannot be explained by differences in the velocity. 

6 .  The C group is m o r e  pronounced for  meteors  with brightness f rom 

The relative number of short-period and less-eccentr ic  
2 

1 to about -6 mag. 

orbits belonging to the A group increases  with decreasing brightness of Super- 

Schmidt meteors .  Meteors  with v 

The C level is not observed a t  these low velocities. 

7.  

< 15 k m  sec - l  belong only to the A group. 
00 

The average end heights of the A-group me teo r s  a r e  about 5 k m  lower 

than those of the C-group meteors.  

groups a r e  inclined by approximately -1. 5 in  the pE - v 

is inclined by - 3 .  6 in the same plot. 

The end-height levels for  the A and C1 

plot; the C2 level 
00 

8. If the velocity dependence is removed, the shor tes t  luminous t ra jec-  

t o r i e s  belong to the A group and the longest to the C1 group; the C group has  2 
shor t e r  luminous t ra jec tor ies  than the C1 group. 

R 9. There is a systematic  change of cos Z withvelocity 

C levels and a sudden change f r o m  the C1 to the C group. 2 

10. The C level is connected with the 1-  to 2-order  ratio 

m e t r i c  and the dynamic mass .  The A level is connected with 

which the difference between the photometric and the dynamic 

along the A and 

of the photo- 

meteors  for  

mass is small. 

11. The separation between A and C groups is not connected with daily 

An actual index of magnetic activity measured a t  and seasonal variations. 

Tucson shows no relation to the separation of beginning height of Super- 

Schmidt meteors  into two main A and C levels.  

12. The classical  meteor  showers do not differ f r o m  the sporadic 

m e t e o r s  of the B and C groups. The only exceptions a r e  the y Draconids 

with beginning height 7 k m  higher than the C group a t  the same velocity. 

m e a n s  that they differ by almost the same (slightly l e s s )  height interval f rom 

the C level as the C level differs f r o m  the A level a t  the same  velocity. 

This 

3. I”feteoi.s p r c  :FcE spec t ra  a& ar&fficia? i r o n  =*eteoroids hzx7p 

beginning heights lower than the A group at the same velocity. 

is not grea te r  than 1 0  km. 

The difference 
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3 .  INTER PRE TA TION 

3 .  1 Possible Explanations 

rl 

I consider that there  a r e  the following possible explanations for  the above 

observational facts: 

1. meteoroid composition, 

2 .  fragmentation and spraying, 

3. additional radiation of a n  abnormal  nature a t  the beginning (different 

f rom the normal  radiation by emission l ines of metals) ,  

4. variation of a i r  density in the 90- to 100-km heights, 

5. change of the aerodynamic flow regime, 

. 

6. 

7. rotation. 

difference in the meteor  surface temperature  a t  the beginning height, 

Interpretation 4 is partially answered by the observational fact  11. If 

variations of air density a r e  responsible for  the two beginning-height levels, 

then these variations ought to be different f rom the daily, seasonal, and 

magnetic-index variations. 

f o r  the total effect, which could be explained only by changes of air density 

by a factor  of 5 to  6.  

This s eems  highly improbable a s  a n  explanation 

If one examines explanation 3, the forbidden oxygen line could be a 

possibility because it started to  emit light some 1 0  km higher than the main 

me teo r  radiation. 

c a m e r a s  is not sensitive at  this particular wavelength. 

"air radiation" in the blue spectral  region mus t  be a ma t t e r  fo r  conjecture. 

Nothing of this nature is  known at the present  time, but the spec t ra l  distribu- 

t i n=  nf me tee r  l ight is n n t  known f o r  the br ightness  interval of Super-Schmidt 

meteors .  There  is, of course, the contrary indication that the faint me teo r s  

do radiate relatively m o r e  in the red region. 

But the "blue" emulsion used fo r  the Super-Schmidt 

Thus, a s imilar  
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Explanation 6 is closely connected with the composition and s t ructure  

of the body. 

reached the conditions for sufficient ablation with surface temperatures  at 

the rat io  of 6 to 1. 

One cannot imagine any reason why two identical bodies 

Explanation 7 means that the A level mus t  be connected with sufficiently 

rotating meteoroids and the C level with nonrotating meteoroids. 

equivalent to a 4 to 1 input ratio of heat on the surfaces.  This ratio is roughly 

consistent with the height difference of the A and C levels;  but if one considers 

a l l  the orbital  differences between A and C, then this explanation a l so  fails. 

This is 

A different heat t ransfer  coefficient A a t  g rea te r  heights has a d i rec t  

influence on the beginning height. Thus, the two beginning-height levels, A 

and C, could be explained by two different values of A,  which could co r re s -  

pond to two different aerodynamic-flow regimes.  The coexistence of these 

two levels in  the velocity interval f rom f rom 20  to  40 km s e c  

nullifies this explanation as being the only one. 

these levels must differ in dimensions a t  the same velocity. 

o r  fragmentation must  be accepted together with the change of flow regime to 

explain the coexistence of A and C levels in this broad velocity interval. 

-1 of course 

It means the meteors  a t  

The composition 

If one assumes  that the Super-Schmidt me teo r s  a r e  s o  small that radia- 

tion cooling s t a r t s  to  be decisive a t  the beginning height, then the only expla- 

nations of the two levels could be: differences in rotation, heat t ransfer ,  o r  

emmissivity. 

-4 

Hence, the observational resu l t s  mus t  be explained mainly by interpre-  

tations 1 o r  2. 

3. 2 Meteoroid Composition 

Meteoroid composition was proposed as the only explanation in my  

ea r l i e r  paper (1967), where "composition" is understood to be represented by 

the product of heat capacity, thermal  conductivity, and bulk density of a body. 
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The observational evidence presented in Section 2. 13 is more complex than in 

that paper: thus, some revision seems to  be necessary.  If one s t i l l  wished 

to  use only meteoroid composition to  explain the two levels of beginning height, 

then the following facts a r e  favorable. 

If the composition-density relationship suggested ea r l i e r  (Ceplecha, 1967) 

i s  valid, then observational fact  1 requires  density of the A-group me teo r s  to 

be 3 times grea te r  than that of the C group meteors ,  which seems  reasonable. 

The end-height difference mentioned in 7 is a l so  consistent with this density 

ratio.  I t  is evident f r o m  2 that  C and C have the same composition. The 1 2 
lack of the C group with vco < 15  k m  sec'l mentioned in 6 could be explained 

simply by the nonexistence of bodies with correspondingly short-period orbi ts  

within the C group. Thus, a possible explanation of observational fact  12  is 

that the C group is connected with the cometary system, which, together with 

observational fact  3, means  that the C 

comets  and the C 

group is connected with short-period 
1 

group with long-period comets.  2 

The existence of the y Draconids could be explained by their  extremely 

low bulk density, which should be 2 o r  3 t imes  l e s s  than the average density 

of the C group. 

is lower for  the me teo r s  of the A and C groups than fo r  iron. 

density of the A-group meteors  is then between 7. 7 and 2. 5 g cm 

C group between 2. 5 and 0.8 g 

and 0. 8 g c m  

Observational fact 13 means  that the absolute bulk density 

The bulk 
-3  , f o r  the 

and fo r  the y Draconids between 0. 3 
- 3  . These  densit ies a r e  consistent with observational fact  10. 

The difference in the velocity exponents at the end heights fo r  the C and 1 
C2 groups (observational f ac t  7), a s  well as observational fact  8, could not 

be explained by the composition. 

explained by some geometrical  effect due to the differences between the con- 

dit ions of collision of meteoroids with the ea r th  in  long- and short-period 

o r  bits. 

But both these, according to 9 could be 

There  is really no d i rec t  observational evidence to  disprove the 

m e t  e or  oid - compo s i t  ion explanation. 
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3.  3 Fragmentation and Spraying 

Fragmentation could be important in explaining the two main  levels (A 

and C )  of beginning height if it  takes place before the beginning point. 

the A level could be that of a single body and the C level that of f ragments  o r  

droplets.  

level of heat-conductivity cooling (Ceplecha and Padevet, 196 1).  

encc in  height of these t w o  levels is about right, but the velocity exponent 

f o r  the C group ought to be 3. 

i f  we consider that a par t  of the heat-conductivity height is contained in f r ag -  

ments ,  which is simply due to a "reference height" where the fragments  were 

separated f r o m  the ma in  body (and heat conductivity is the only possible 

process  for  energy output at this height fo r  meteors  of Super-Schmidt dimen- 

s ions). 

Then 

This means that the C level is one of radiation cooling and the A 
L The differ-  

The 2. 5 exponent is not surprising, however, 

The absence of the C group with v < 15 km sec- '  is evidence that 
00 

fragmentation is  an explanation. 

is decelerated so  strongly that the temperature  could not reach  that for  

vaporization. 

i t ies,  and v < 15 km sec corresponds to the dimensions of stony frag- 

ments  l e s s  than about 70  p, in  radius. 

by Simonenko (1967) and two ea r l i e r  papers by Smith (1954) and McCrosky 

(1 968). 

Any small fragment with such a velocity 

Thus, only the single-body level is  expected a t  these veloc- 
-1 

co 
This is consistent with a recent paper 

Spraying, instead of fragmentation, is probably impossible owing to the 

fact  that the height interval f r o m  the melting point to vaporization is sub- 

stantially smaller  than the difference between the A and C groups. 

spray s t a r t s  too late to enable it to produce the C level; the sp ray  level is 

probably lower than the C level. 

The 

One fact  detracts  f rom the explanation of fragmentation as the only cause 

of the observed A a n d  C levels of beginning height: 

start much higher than the C level. 

meteoroid a t  that t ime is quite low and the s t ruc ture  of the body would be 

fragmentat ion should 

The tempera ture  on the surface of the 
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extremely fragile. But the A level ( interpreted in this  chapter as  the single- 

body level), according to 13, corresponds to densit ies of the body of a t  l eas t  

2. 5 g which could hardly be fragile enough. Also, the existence of 

of y Draconids is not consistent with this interpretation: the height level f o r  

evaporation of smal l  f ragments  with radiation cooling could not be s o  high, 

o r  the single fragments mus t  have very low densities. The existence of an  

intermediate B group is a l so  not quite consistent with this interpretation. 

On the other hand, there  i s  good agreement with observational facts  7, 8, 
and 10. 

than the explanation by composition. 

It s eems  that the explanation by fragmentation only is l e s s  probable 

3 .  4 Meteor Densities 

Even if  we assume that the A and C levels of beginning height can be 

explained by fragmentation, the average density of the A group would be a t  

l eas t  2. 5 g c m  

composition but does reflect a difference between the dimensions of f ragments  

and those of the body belonging to  the A level. 

- 3  . Hence, the C group does not reflect  any difference in 

If we explain the A and C levels as two different composition groups of 

meteors ,  we get the average bulk densities of the A group in a broad interval 

with resemblance to the stony meteorite densities, and the average bulk 

densi t ies  of the C group somewhere close to  1.  

orbi ta l  elements of the meteors  of each particular group, we a r e  inclined to  

explain the C group as comets (C1 connected with short-period comets, and 

C 

similar to the meteorite densit ies (Ceplecha, 1967). I intentionally omitted 

the t e r m  "asteroidal" since the origin of A-group meteoroids is a completely 

different  problem f rom that of their  average bulk densities. 

If we a l so  consider the 

with long-period comets), and the A group a s  meteoroids with densit ies 2 

Verniani (1965) computed the meteoroid bulk densit ies using luminous 

and d r a g  equations, which a r e  assumed to be valid during the light t ra jectory 

of the meteor.  This i s  completely different f rom the present  paper, where I 
. .  _ _  uat: - - the meteor trajectoi-y before  the light begins. Veriiiaiii i ~ q ~ ~ t e d  d y n a i ~ i ~  
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and photometric m a s s e s  and thus attributed all the differences in these m a s s e s  

to  the difference in bulk density. 

computed ( 1  966) the least-  squares solution fo r  the exponents in the equations 

used by Verniani. 

the theoretical  ones used by Verniani. 

not consistent with the observational mater ia l ,  any value of the average bulk 

density computed with theoretical  exponents will probably be in e r r o r .  

Observational fact 1 0  of this paper and my  previous resul ts  (1966) favor  

acceptance of the meteori te  densit ies fo r  the A group of meteors ,  and densi- 
t i e s  somewhere close to  1 f o r  the C group. There  a r e  so many discrepancies 

in our present knowledge of meteors  that no final conclusions on the bulk den- 

s i t ies  of meteors  should be drawn either f rom the beginning heights o r  f r o m  

the comparison of photometric and dynamic mass .  

F o r  the same  observational mater ia l ,  I 

The computed exponents a r e  completely different f r o m  

Since the theoretical equations a r e  

The difference between the dynamic and photometric m a s s e s  may be, in 

grea t  part ,  caused by the nonvalidity of the simple equations of meteor  physics. 

The conventional luminous equation and the drag equation, a s  they a r e  applied 

to the measurement of the meteor  image, may contain the flaw. 

5 0  
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